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INTRODUCTION 
The ISO 26262 is an international standard for 
functional safety of electrical and electronic systems 
installed in serial production road vehicles. This 
standard recognizes two types of failures: 

1. The first type is Systematic Failures 
These failures are induced in a deterministic way 
during the system's development, manufacturing, 
or maintenance. They are process-related issues 
and are sourced in pre-production activities, such 
as specification issues or manufacturing defects. 
The ISO 26262 standard targets preventing and 
avoiding these kinds of failures.

2. The second type is Random Failures 
Random failures are related to random defects 
and process or usage conditions such as radiation 
or silicone wear out. Random failures are 
separated into two groups: permanent faults and 
transient faults. ISO 26262 also targets controlling 
random failures.

 
At Veriest, as an ASIC services company, we handle 
many different automotive projects with varying 
safety level requirements. In this article, I'd like to 
share some of the "lessons learned" in these projects.

The verification problem we are targeting here is that 
state-of-the-art functional verification methodology is 
not directly supporting verification of random failures 
within ISO 26262 requirements for functional safety. 
We believe a verification methodology is required to 
distinguish functional safety verification from classical 
functional verification flow. For this, we need new 
tools and verification approaches, and stricter and 
well-documented verification procedures. And our 
particular focus is transient faults that can randomly 
upset the state of a system we are verifying.

In a semiconductor world, functional safety is all 
about data storage and data movement through the 
system. Electrical or magnetic interference inside 
hardware systems can cause a single bit to flip to the 

opposite state spontaneously. And this is a typical 
case for random failure, which we desperately need 
to analyze and see its effects on the functional 
behavior of the system we are verifying. 

FUNCTIONAL SAFETY 
VERIFICATION CHALLENGE 
In a usual ASIC implementation flow, we are always 
starting from a design specification. The design 
team interprets the specification and defines a 
microarchitecture for the safety features we are 
analyzing. On the other side, the verification team is 
doing an independent analysis and is building the 
functional verification environment. 

The goal of verification is to build a testbench and test 
plan for functional verification of the safety features in 
our design under test. By the methodology definition, 
a black-box verification approach is required to verify 
the system only through the available interfaces 
without any knowledge of the actual implementation 
of the design.
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If we take our design example, an automotive AI 
processor, we can see typical data flow processing 
architecture receiving input data from some data 
buffer. This data is then distributed to the processing 
elements through the specified distribution 
network. In an AI processor, data processing is 
based on a multiply-and-accumulate architecture. 
This processing block is usually parallelized and has 
additional internal memory buffers supporting the 
required data transformation flow. Further, there can 
also be some post-processing mechanism in a data 
pipeline before sending the results to the output 
memory buffer.

And as usual, there are some configuration and status 
registers through which users can navigate the data 
processing flow according to their needs and monitor 
relevant status information.

As we can see in Figure 3, there are different 
memory blocks in this data processing pipeline. To 
ensure fault-less memory status, we need some data 
protection mechanisms implemented in the system. 

If we start with one memory block, we need to have 
a block to calculate error correction codes before we 
write data into memory. This is typically based on a 
data word that enters the system.

When we read data from memory, we also read 
the ECC code stored during a write cycle. Each 
information is sent to the ECC check and correction 

module. At the output, we have the corrected read 
data and the ECC status check information. 

In some advanced systems with stricter safety targets, 
we might have a situation where ECC calculation 
and check include the address information and data 
(Figure 4).

From the verification strategy perspective, we need 
to define hooks in the system to check that ECC 
mechanisms are implemented according to the 
functional specification and safety requirements. For 
this purpose, an ECC verification agent is required. 
This agent needs to connect the ECC model to 
the primary data source. Further, the ECC agent 
must check that the write cycle is correct. This write 
checker takes reference information from the ECC 
model and checks if the system behavior complies 
with the specification. 

Next, the ECC agent also must investigate the read 
cycle. For this, we need two hooks in a system: The 
first one is the output from memory. The second hook 
is the output from the ECC check and correction 
module. Reference data is also taken from the ECC 
model. 

And finally, the ECC agent must report the ECC 
status information to the system controller. From 
the functional verification perspective, these are all 
passive components and functional checkers.

Figure 3
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But our ECC agent also needs to support the 
active error injection to the system, emulating 
the permanent or transient faults that might 
happen during the system lifetime. This requires 
a constrained-random BFM and a driver to 
generate and drive required error types. Those 
errors can be of the permanent type, and they are 
typically connected to the memory models. For 
verifying transient faults, we are interested in data 
manipulations on the read data path. Here, the 
focus is on analyzing single bit upsets in the logic 
that uses memory data.

The ECC agent must have an ECC predictor, which 
will create expected results related to the ECC. 
These results will be later used to check the ECC 

status reported by the system (Figure 5).

This short analysis shows the challenge when it 
comes to the verification of a functional safety 
mechanism. Firstly, we need to have an error 
injection inside DUT. Since verification needs 
to have insights into DUT internal signals, the 
standardized black-box methodology is not 
applicable. We need a new approach – white-box 
verification.

In this case, error reports are desirable. Usually, 
error reports indicate something is not good, 
but we want to see errors reported from the 
system and the verification environment. This 
means the DUT functional state is disturbed, and 

Figure 4

Figure 5:
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some actions are expected. With this, the classic 
verification tree is growing a new branch to meet ISO 
26262 requirements, which implies white-box error 
generation and injection.

ERROR INJECTION MECHANISMS 
From the safety UVC architecture perspective, an ECC 
agent needs to have ECC modeling, ECC checkers, 
error injection, error monitoring and prediction, error 
reporting, and recovery flow implementation. From 
the verification perspective, all those requirements 
are aligned with typical safety agent architecture that 
contains sequencer, BFM, signal sampling, collector, 
and monitor with scoreboard and checker's block. 
The environment is also required to have specific 
configuration parameters and register model.

Note that for the error injection, we need to have a 
specified list of the signals through which faults are 
randomly injected. Error injection constraints are 
defined within the sequence driver implementation, 
and actual signal upset events are defined within the 
safety UVC bus functional model.

From the error injection perspective, we have two 
options: signal deposit or signal force. Whatever we 
choose, the error injection must be implemented by 
bit flipping on the design side. Signals corrupted from 
the verification environment must be agreed upon 
with the design team. This is a crucial requirement for 
achieving required safety targets.

But while defining this list, try to select registers and 
not wires or nets in a design. Verilog nets have a 
resolution function that might give an unexpected 
value if there are multiple drivers on that net. For 
example, suppose the verification environment is 
driving this net to inject a transient error, and the 
design is also driving that net to a different value 
in the same simulation time due to other functional 
requirements. In that case, we might get an 
unexpected value on that net due to the resolution 
function that the simulator will apply (Figure 6).

To summarize, signal deposit gives a value to a net 
or register that will propagate forward. The signal 
retains that value until its next scheduled change. A 
signal deposit gives the best performance when used 
for corrupting memory bits or simulating not-desired 
flip-flop toggles in the data processing pipeline.

Signal force is a slightly different mechanism. It 
forces a value to continuous assignments that will 
propagate forward. It overrides all other drivers and 
stays in effect until replaced with another force or 
canceled with a release. This method should be used 
for injecting permanent faults. In addition, it can also 
be applied for injecting transient faults to the system, 
together with a signal release, as illustrated in the 
example below.

 

Figure 6

task force_error( ... ) ;
  @(negedge if.clk);
  if (a_error_type in [DATA_ERROR, DATA_AND_PARITY_ERROR]) 
     begin
     force p_smp.psl signal data[a sig_idx] = a_data_corrupted;
  end
  if (a_error_type in [PARITY ERRORS, DATA_AND_PARITY_ERROR]) 
     begin
     force p_smp.psl_signal_parity[a sig_idx] = a_parity_corrupted;
  end
endtask : force_error

task release_error( ... ) ;
  @(posedge if.clk); 	 // skip next rising edge, wait for signal force
  #(CLK_PERIOD/3); 	 // avoid race conditions with monitor,
		  // release signals after clock rising edge
  if (a_error_type in [DATA_ERROR, DATA_AND_PARITY_ERROR])  
     begin
     release p_smp.psl_signal data[a_sig_idx];
  end
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In this example, we have a SystemVerilog task 
forcing a corrupted value to a signal at the negative 
edge of the clock signal. Depending on the 
generated error type, this task will force a value 
to a data signal or a signal that holds parity bit 
information. If the system enables double error 
injection, the task might force a corrupted value to 
both the data and parity signals.

Then, the verification environment must also release 
the force to model transient fault injection. This 
task must be executed after the error is injected. 
In this example, error injection is on the negative 
clock edge so that the signal can be released with 
the next rising edge of the clock. To ensure no race 
conditions with the monitor or any other part of the 
simulated Verilog code, we might want to move the 
signal release slightly after the rising edge of the 
clock signal. And then, depending on the injected 
error type, we release data signal, parity signal, or 
both.

From the timing perspective, the error is generated 
on a negative clock edge. Then the force and 
release tasks are started with the next rising 
clock edge, and the signal force is applied on the 
first negative edge after that. Lastly, the force is 
released slightly after the following rising edge 
of a clock signal. This approach implements error 
injection for a transient fault that lasts longer than 
half a clock (Figure 7).

There are also specific challenges when injecting 
errors into the data processing pipeline. Corruption 
of some data bits might not influence the results 
and signature check if we look at a simple limiter 
that reduces the 16-bit value to an 8-bit result. If the 
error is injected outside the output value range, it 
will be ignored and will not influence the signature 
value (Figure 8).

Also, note that the injected error might take several 
clock cycles to impact the result and signature due 
to multi-cycle paths and pipelined organization. 
Using a signal deposit for error injection in such 
data paths is more convenient, but please be 
mindful of the Verilog resolution function.

SAFETY MONITORING  
AND RECOVERY FLOW 
Another critical aspect of the safety UVM 
implementation is the safety monitor. This block 
must observe system behavior when errors are 
being injected but also when errors are not injected 
in the system to ensure that false error reports 
are not detected with DUT. With this definition, 
the safety monitor must execute three threads in 
parallel: 

• The signal sampling
• Idle monitoring during periods when the 

verification environment does not inject errors, 
and 

• Error checking when transient faults are injected 
from the safety UVC BFM 

Figure 7

Figure 8

  if (a error_type in [PARITY_ERRORS, DATA_AND_PARITY_ERROR]) 
     begin
     release p_smp.psl_signal_parity[a_sig_idx];
  end
endtask : release_error
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For example, we can start those three threads from 
the UVC monitor after the reset period from the pre_
main_phase (part of the UVM phasing mechanism).

In addition to the monitoring, it is crucial to ensure 
that the error recovery flow works. It's essential to 
ensure that when the system detects an error, it is 
reported to a user through the specified mechanism, 
and the appropriate control action is taken. We call 
this action the error recovery mechanism, and its 
execution is required for returning the system to 
normal function. 

For example, if the error is reported from the 
functional safety monitoring block, the user must 
check the error source by reading appropriate status 
register. Then, depending on the error source, some 
specific action must be taken. After this action is 
completed the verification environment must make 
sure that normal functionality is continued. 

For realistic modeling, a recovery flow should use 
front door access to the status information, for 
example through the APB or AXI register access 
methods. Those transactions take certain time in 
clock cycles, particularly if clock division is applied to 
an interface that is used for access to status registers. 

During this period, verification environment might 
randomly choose to inject new error into the system. 
This scenario puts a stress on verification environment 
with at least two errors injected but only one error 
recovery procedure taken. Due to this, the verification 
team must ensure that the ECC agents are unifying 
multiple errors into one recovery flow with an atomic 
approach to a ECC error recovery. 

When critical event is detected, a specification might 
require that all data processing is stopped, and reset 
is executed. Such error recovery flow for critical 
events must be also verified. It's important to re-start 
the processing after the reset is executed to check 
that system is back to normal functional mode after 
the critical error recovery flow is executed.

VERIFICATION MINDSET 
FOR FUNCTIONAL SAFETY 
VERIFICATION 
If we look at the required procedures for functional 
safety verification, they are much stricter and more 
formalized to comply with ISO 26262 requirements. 
Verification procedures must be enforced and 
documented. In addition, during functional 
verification of the safety mechanisms, it is required 
to have continuous review process in place, where 
all meetings must be documented until all follow up 
action items are not implemented. And to achieve this 
different mindset is required. The safety procedure is 
the main point, not document for internal use.

CONCLUSIONS 
In one simple sentence, functional safety is related to 
a safe machinery that will not cause any risk to human 
life. Automotive ICs are the active systems with 
implemented safety mechanisms for mitigating failure 
effects before human life is endangered. This article 
presented some of the functional verification aspects 
that were successfully applied in several automotive 
projects. Hopefully, some of the presented ideas will 
help implementation of some other projects.

class safety_monitor extends uvm_monitor #(my_transaction);
   `uvm_component_utils(safety_monitor)
   ...
   task pre_main_phase (uvm_phase phase);
       forever begin
           @(posedge dut.reset);
           fork
                sample_signals();
                idle_monitor();
                check_dut_error();
           join_none

           @(negedge dut.reset);
           disable fork;
       end
   endtask: pre_main_phase
endclass: safety_monitor
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