
59

INTRODUCTION
The ISO 26262 is an international standard for
functional safety of electrical and electronic systems
installed in serial production road vehicles. This
standard recognizes two types of failures:

1. The first type is Systematic Failures
These failures are induced in a deterministic way
during the system's development, manufacturing,
or maintenance. They are process-related issues
and are sourced in pre-production activities, such
as specification issues or manufacturing defects.
The ISO 26262 standard targets preventing and
avoiding these kinds of failures.

2. The second type is Random Failures
Random failures are related to random defects
and process or usage conditions such as radiation
or silicone wear out. Random failures are
separated into two groups: permanent faults and
transient faults. ISO 26262 also targets controlling
random failures.

At Veriest, as an ASIC services company, we handle
many different automotive projects with varying
safety level requirements. In this article, I'd like to
share some of the "lessons learned" in these projects.

The verification problem we are targeting here is that
state-of-the-art functional verification methodology is
not directly supporting verification of random failures
within ISO 26262 requirements for functional safety.
We believe a verification methodology is required to
distinguish functional safety verification from classical
functional verification flow. For this, we need new
tools and verification approaches, and stricter and
well-documented verification procedures. And our
particular focus is transient faults that can randomly
upset the state of a system we are verifying.

In a semiconductor world, functional safety is all
about data storage and data movement through the
system. Electrical or magnetic interference inside
hardware systems can cause a single bit to flip to the

opposite state spontaneously. And this is a typical
case for random failure, which we desperately need
to analyze and see its effects on the functional
behavior of the system we are verifying.

FUNCTIONAL SAFETY
VERIFICATION CHALLENGE
In a usual ASIC implementation flow, we are always
starting from a design specification. The design
team interprets the specification and defines a
microarchitecture for the safety features we are
analyzing. On the other side, the verification team is
doing an independent analysis and is building the
functional verification environment.

The goal of verification is to build a testbench and test
plan for functional verification of the safety features in
our design under test. By the methodology definition,
a black-box verification approach is required to verify
the system only through the available interfaces
without any knowledge of the actual implementation
of the design.

Functional Safety Verification Challenges
for Automotive ICs
by Mihajlo Katona, Veriest

Figure 1

Figure 2

60

If we take our design example, an automotive AI
processor, we can see typical data flow processing
architecture receiving input data from some data
buffer. This data is then distributed to the processing
elements through the specified distribution
network. In an AI processor, data processing is
based on a multiply-and-accumulate architecture.
This processing block is usually parallelized and has
additional internal memory buffers supporting the
required data transformation flow. Further, there can
also be some post-processing mechanism in a data
pipeline before sending the results to the output
memory buffer.

And as usual, there are some configuration and status
registers through which users can navigate the data
processing flow according to their needs and monitor
relevant status information.

As we can see in Figure 3, there are different
memory blocks in this data processing pipeline. To
ensure fault-less memory status, we need some data
protection mechanisms implemented in the system.

If we start with one memory block, we need to have
a block to calculate error correction codes before we
write data into memory. This is typically based on a
data word that enters the system.

When we read data from memory, we also read
the ECC code stored during a write cycle. Each
information is sent to the ECC check and correction

module. At the output, we have the corrected read
data and the ECC status check information.

In some advanced systems with stricter safety targets,
we might have a situation where ECC calculation
and check include the address information and data
(Figure 4).

From the verification strategy perspective, we need
to define hooks in the system to check that ECC
mechanisms are implemented according to the
functional specification and safety requirements. For
this purpose, an ECC verification agent is required.
This agent needs to connect the ECC model to
the primary data source. Further, the ECC agent
must check that the write cycle is correct. This write
checker takes reference information from the ECC
model and checks if the system behavior complies
with the specification.

Next, the ECC agent also must investigate the read
cycle. For this, we need two hooks in a system: The
first one is the output from memory. The second hook
is the output from the ECC check and correction
module. Reference data is also taken from the ECC
model.

And finally, the ECC agent must report the ECC
status information to the system controller. From
the functional verification perspective, these are all
passive components and functional checkers.

Figure 3

61

But our ECC agent also needs to support the
active error injection to the system, emulating
the permanent or transient faults that might
happen during the system lifetime. This requires
a constrained-random BFM and a driver to
generate and drive required error types. Those
errors can be of the permanent type, and they are
typically connected to the memory models. For
verifying transient faults, we are interested in data
manipulations on the read data path. Here, the
focus is on analyzing single bit upsets in the logic
that uses memory data.

The ECC agent must have an ECC predictor, which
will create expected results related to the ECC.
These results will be later used to check the ECC

status reported by the system (Figure 5).

This short analysis shows the challenge when it
comes to the verification of a functional safety
mechanism. Firstly, we need to have an error
injection inside DUT. Since verification needs
to have insights into DUT internal signals, the
standardized black-box methodology is not
applicable. We need a new approach – white-box
verification.

In this case, error reports are desirable. Usually,
error reports indicate something is not good,
but we want to see errors reported from the
system and the verification environment. This
means the DUT functional state is disturbed, and

Figure 4

Figure 5:

62

some actions are expected. With this, the classic
verification tree is growing a new branch to meet ISO
26262 requirements, which implies white-box error
generation and injection.

ERROR INJECTION MECHANISMS
From the safety UVC architecture perspective, an ECC
agent needs to have ECC modeling, ECC checkers,
error injection, error monitoring and prediction, error
reporting, and recovery flow implementation. From
the verification perspective, all those requirements
are aligned with typical safety agent architecture that
contains sequencer, BFM, signal sampling, collector,
and monitor with scoreboard and checker's block.
The environment is also required to have specific
configuration parameters and register model.

Note that for the error injection, we need to have a
specified list of the signals through which faults are
randomly injected. Error injection constraints are
defined within the sequence driver implementation,
and actual signal upset events are defined within the
safety UVC bus functional model.

From the error injection perspective, we have two
options: signal deposit or signal force. Whatever we
choose, the error injection must be implemented by
bit flipping on the design side. Signals corrupted from
the verification environment must be agreed upon
with the design team. This is a crucial requirement for
achieving required safety targets.

But while defining this list, try to select registers and
not wires or nets in a design. Verilog nets have a
resolution function that might give an unexpected
value if there are multiple drivers on that net. For
example, suppose the verification environment is
driving this net to inject a transient error, and the
design is also driving that net to a different value
in the same simulation time due to other functional
requirements. In that case, we might get an
unexpected value on that net due to the resolution
function that the simulator will apply (Figure 6).

To summarize, signal deposit gives a value to a net
or register that will propagate forward. The signal
retains that value until its next scheduled change. A
signal deposit gives the best performance when used
for corrupting memory bits or simulating not-desired
flip-flop toggles in the data processing pipeline.

Signal force is a slightly different mechanism. It
forces a value to continuous assignments that will
propagate forward. It overrides all other drivers and
stays in effect until replaced with another force or
canceled with a release. This method should be used
for injecting permanent faults. In addition, it can also
be applied for injecting transient faults to the system,
together with a signal release, as illustrated in the
example below.

Figure 6

task force_error(...) ;
 @(negedge if.clk);
 if (a_error_type in [DATA_ERROR, DATA_AND_PARITY_ERROR])
 begin
 force p_smp.psl signal data[a sig_idx] = a_data_corrupted;
 end
 if (a_error_type in [PARITY ERRORS, DATA_AND_PARITY_ERROR])
 begin
 force p_smp.psl_signal_parity[a sig_idx] = a_parity_corrupted;
 end
endtask : force_error

task release_error(...) ;
 @(posedge if.clk); 	 // skip next rising edge, wait for signal force
 #(CLK_PERIOD/3); 	 // avoid race conditions with monitor,
		 // release signals after clock rising edge
 if (a_error_type in [DATA_ERROR, DATA_AND_PARITY_ERROR])
 begin
 release p_smp.psl_signal data[a_sig_idx];
 end

63

In this example, we have a SystemVerilog task
forcing a corrupted value to a signal at the negative
edge of the clock signal. Depending on the
generated error type, this task will force a value
to a data signal or a signal that holds parity bit
information. If the system enables double error
injection, the task might force a corrupted value to
both the data and parity signals.

Then, the verification environment must also release
the force to model transient fault injection. This
task must be executed after the error is injected.
In this example, error injection is on the negative
clock edge so that the signal can be released with
the next rising edge of the clock. To ensure no race
conditions with the monitor or any other part of the
simulated Verilog code, we might want to move the
signal release slightly after the rising edge of the
clock signal. And then, depending on the injected
error type, we release data signal, parity signal, or
both.

From the timing perspective, the error is generated
on a negative clock edge. Then the force and
release tasks are started with the next rising
clock edge, and the signal force is applied on the
first negative edge after that. Lastly, the force is
released slightly after the following rising edge
of a clock signal. This approach implements error
injection for a transient fault that lasts longer than
half a clock (Figure 7).

There are also specific challenges when injecting
errors into the data processing pipeline. Corruption
of some data bits might not influence the results
and signature check if we look at a simple limiter
that reduces the 16-bit value to an 8-bit result. If the
error is injected outside the output value range, it
will be ignored and will not influence the signature
value (Figure 8).

Also, note that the injected error might take several
clock cycles to impact the result and signature due
to multi-cycle paths and pipelined organization.
Using a signal deposit for error injection in such
data paths is more convenient, but please be
mindful of the Verilog resolution function.

SAFETY MONITORING
AND RECOVERY FLOW
Another critical aspect of the safety UVM
implementation is the safety monitor. This block
must observe system behavior when errors are
being injected but also when errors are not injected
in the system to ensure that false error reports
are not detected with DUT. With this definition,
the safety monitor must execute three threads in
parallel:

• The signal sampling
• Idle monitoring during periods when the

verification environment does not inject errors,
and

• Error checking when transient faults are injected
from the safety UVC BFM

Figure 7

Figure 8

 if (a error_type in [PARITY_ERRORS, DATA_AND_PARITY_ERROR])
 begin
 release p_smp.psl_signal_parity[a_sig_idx];
 end
endtask : release_error

64

For example, we can start those three threads from
the UVC monitor after the reset period from the pre_
main_phase (part of the UVM phasing mechanism).

In addition to the monitoring, it is crucial to ensure
that the error recovery flow works. It's essential to
ensure that when the system detects an error, it is
reported to a user through the specified mechanism,
and the appropriate control action is taken. We call
this action the error recovery mechanism, and its
execution is required for returning the system to
normal function.

For example, if the error is reported from the
functional safety monitoring block, the user must
check the error source by reading appropriate status
register. Then, depending on the error source, some
specific action must be taken. After this action is
completed the verification environment must make
sure that normal functionality is continued.

For realistic modeling, a recovery flow should use
front door access to the status information, for
example through the APB or AXI register access
methods. Those transactions take certain time in
clock cycles, particularly if clock division is applied to
an interface that is used for access to status registers.

During this period, verification environment might
randomly choose to inject new error into the system.
This scenario puts a stress on verification environment
with at least two errors injected but only one error
recovery procedure taken. Due to this, the verification
team must ensure that the ECC agents are unifying
multiple errors into one recovery flow with an atomic
approach to a ECC error recovery.

When critical event is detected, a specification might
require that all data processing is stopped, and reset
is executed. Such error recovery flow for critical
events must be also verified. It's important to re-start
the processing after the reset is executed to check
that system is back to normal functional mode after
the critical error recovery flow is executed.

VERIFICATION MINDSET
FOR FUNCTIONAL SAFETY
VERIFICATION
If we look at the required procedures for functional
safety verification, they are much stricter and more
formalized to comply with ISO 26262 requirements.
Verification procedures must be enforced and
documented. In addition, during functional
verification of the safety mechanisms, it is required
to have continuous review process in place, where
all meetings must be documented until all follow up
action items are not implemented. And to achieve this
different mindset is required. The safety procedure is
the main point, not document for internal use.

CONCLUSIONS
In one simple sentence, functional safety is related to
a safe machinery that will not cause any risk to human
life. Automotive ICs are the active systems with
implemented safety mechanisms for mitigating failure
effects before human life is endangered. This article
presented some of the functional verification aspects
that were successfully applied in several automotive
projects. Hopefully, some of the presented ideas will
help implementation of some other projects.

class safety_monitor extends uvm_monitor #(my_transaction);
 `uvm_component_utils(safety_monitor)
 ...
 task pre_main_phase (uvm_phase phase);
 forever begin
 @(posedge dut.reset);
 fork
 sample_signals();
 idle_monitor();
 check_dut_error();
 join_none

 @(negedge dut.reset);
 disable fork;
 end
 endtask: pre_main_phase
endclass: safety_monitor

Over 375 Videos Available Covering
• Functional Safety
• UVM Framework
• UVM Debug
• CDC, Lint & RDC
• SystemVerilog OOP
• Formal Verification
• Metrics in SoC Verification
• Verification Planning
• Introductory, Basic, and Advanced UVM
• Assertion-Based Verification
• FPGA Verification
• Testbench Acceleration
• Power Aware Verification

UVM and Coverage Online Methodology Cookbooks

Discussion Forum with more than 15,345 questions asked

Verification Patterns Library

www.verificationacademy.com

Over 375 Videos Available Covering
• Functional Safety
• UVM Framework
• UVM Debug
• CDC, Lint & RDC
• SystemVerilog OOP
• Formal Verification
• Metrics in SoC Verification
• Verification Planning
• Introductory, Basic, and Advanced UVM
• Assertion-Based Verification
• FPGA Verification
• Testbench Acceleration
• Power Aware Verification

UVM and Coverage Online Methodology Cookbooks

Discussion Forum with more than 15,345 questions asked

Verification Patterns Library

www.verificationacademy.com

Editor:
Tom Fitzpatrick

Program Manager:
John Carroll

Siemens EDA
8005 SW Boeckman Rd.

Wilsonville, OR 97070-7777

Phone: 800-547-3000

To view our blog visit:
VERIFICATIONHORIZONSBLOG.COM

Verification Horizons is
a publication of Siemens EDA

©2022, All rights reserved.

