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Abstract— This paper we will present a functional coverage solution that is based on log files, and leverage generic 

database technologies to parse, ingest and query the data. Such tools are easily available from AWS, Google and other 

public cloud providers. 
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I.  INTRODUCTION   

Functional coverage is a key metric in most verification projects and is used by many teams to “drive” the 

verification process, to determine which areas are sufficiently verified and which ones need further testing. Unlike 

metrics such as number of bugs found, and code coverage, it is decoupled and abstracted from the design, and can 

therefore be used not only by engineers, but also by managers and project leads. Unlike metrics such as number of 

tests written, it is based on data coming from the actual DUT via monitors and is therefore more trustworthy and 

provides a better measure of progress. Unfortunately, it suffers a few major shortcomings that make it a much less 

powerful tool than it could have been. 

In this paper we will present a functional coverage solution that is based on log files, and leverage generic 

database technologies to parse, ingest and query the data. Such tools are easily available from AWS, Google and 

other public cloud providers.  

The following paragraphs show how this flow and these technologies not only address all the shortcomings 

mentioned above, but also allow for much more thorough analysis of data at hand, and deep-dive where needed, 

without being required to rerun lengthy regressions. 

II. FUNCTIONAL COVERAGE 

Functional coverage is a key metric in verification projects used to determine which areas are sufficiently 

verified, and which ones need further testing, thus allowing the verification manager to direct the team's effort. It 

is called “functional”, because unlike code coverage, it is usually derived from documentation describing the 

intended behavior of a design, rather than from implementation. Since the intended behavior is often distributed 

across multiple components of the design, functional coverage usually relies on combinations of events and data 

collected during testing, rather than on testing going through a given line of code.  

 To give an example, a design might be required to complete packet processing in less than a given time, in the 

presence of an interrupt. Functional coverage for this requirement will look for a situation where an interrupt is 

emitted simultaneously with an incoming packet and log it. In conjunction with functional coverage, automatic 

checkers will verify that processing time never exceeds a given number. For such a requirement, it is usually very 

hard to pinpoint a few lines of code implementing it. Therefore, functional coverage is the state-of-the-art metric in 

IC design, while code coverage is usually considered less credible. 

 

                                                           
1 The authors would like to thank Mr. Avidan Efody for his contribution to this paper 



 

2 

 

III. TRADITIONAL FLOW 

The traditional flow for obtaining functional coverage is described on the left-hand side of diagram #1 below. 

Based on the assumption that a complete specification is at hand, the verification team will try to identify indicators 

that a specific situation has been tested, and then implement coverage that monitors these indicators and logs them 

in the coverage database. Since coverage is implemented as part of the testbench, the verification team must run 

some tests or an entire regression before it can look at the coverage results to check what situations have been 

covered. 

 

IV. TRADITIONAL FLOW SHORTCOMINGS 

The traditional flow suffers a few major shortcomings that make it inflexible, partial, platform specific and 

overall limiting. Because coverage is implemented as part of the testbench, and a regression must be run to obtain 

the results, iteration time for any bugs within the coverage collection code is extremely long. Since coverage is 

often implemented towards the end of a project, and since some of the coverage will only be hit by very few tests 

(coverage for interesting corner-cases is a typical example), it is not uncommon for users to run very long 

regressions, only to find that a bug prevented relevant coverage from being collected. 

Worse, at a higher level, coverage flow deviates from a normal analysis flow, in that it forces the users to ask 

all the questions upfront, before they have seen the data collected. Quite often, analysis is an iterative process, 

where one question about the data leads to another. The most interesting questions are not the first ones asked. With 

the traditional coverage flow, users are limited to the coverage they have defined before seeing the data. If coverage 

results trigger some more questions, another long iteration has to be done to get answers. Most often, the effort 

involved makes users simply not ask the questions. 

Finally, the traditional flow is hard to integrate with any platform/language outside RTL simulation in 

SystemVerilog or e. Users looking to merge data coming from sources such as C/C++ FW/SW, SystemC, Matlab, 

VHDL testbenches with their SystemVerilog/e coverage can usually not do it without writing custom code. With 

the exception of emulation, where some vendors offer partial and limited support of coverage, no platform – 

SystemC, FPGA prototyping or real silicon – offers any support for the coverage constructs supported by 

SystemVerilog/e. 

 

V. PROPOSED FLOW 

The flow proposed here is described on the right-hand side of diagram #1. In this flow, the user simply logs the 

data that moves across strategic points in the design or the events emitted by key elements. Examples of strategic 

points and key elements might be interfaces, state machines, configuration and status registers, etc. Following the 

test these logs are uploaded to a cloud provider storage such as AWS, Google or others, and are then parsed and 

placed in an SQL database. Coverage information is obtained by querying this database post testing. Note that many 

cloud providers provide automatic parsing and ingestion of data placed in their storage solution into a variety of 

databases, both SQL and non-SQL. Such flow (i.e. upload logs, then parse/ingest them into a database) is extremely 

common and is an integral part of a wide variety of applications from web-servers to cloud managed production. It 

should also be noted that such flow can often run serverless, without any requirement from the user to manage 

either storage or database servers. 

 The proposed flow solves most of the shortcomings of the traditional flow. By moving coverage extraction to 

post-testing it allows fast iteration, debug, and iterative incremental investigation of the data at hand. By using log 

files instead of specific syntax, it allows coverage information to be collected from any language and platform. 

Furthermore, as the paper will show, using SQL for extracting coverage data, doesn’t only cover almost everything 

possible with SystemVerilog/e cover groups/assertions, but also enables queries that usually require a lot of buggy 

glue logic in testbench environments. Last but not least – the flow is simple and straightforward. 
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Diagram #1 
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VI. SQL AS A COVERAGE TOOL 

To show how SQL can deliver all forms of coverage available as a part of System Verilog coverage syntax and 

much mode, we will demonstrate   how SQL can be fine-tuned, focused and extended without re-running any 

simulations. 

The important point is that there is no need to become a SQL expert, but rather,  a high-level understanding of 

queries is sufficient. As we will see,  there are many new possibilities brought by SQL queries, but also a few 

limitations. 

For example, assume that there is an already parsed transaction log file collected on an AXI interface and placed 

the transactions in an SQL table called axi_if_1. The first few lines and columns of the table axi_if_1 are shown 

below: 

time rd_wr addr       burst len  

 

150  RD    165377426  INCR  12   

 

250  RD    2310710676 FIXED 13   

 

350  WR    2328599037 FIXED 15   

 

360  WR    2921785595 INCR  6    

 

500  RD    1490070710 INCR  0    

 

550  RD    3668650794 FIXED 8    

 

1000 WR    1314868187 INCR  13   

 

1100 RD    3114753989 FIXED 10   

 

1110 RD    2032547025 FIXED 14   

 

1120 WR    2834194867 INCR  4    

 

1490 RD    4294967295 FIXED 8  

 

The following query would give us all distinct values in the burst type column: 

SELECT DISTINCT burst FROM axi_if_1 

 

burst 

 

INCR 

 

FIXED  

 

First thing to note is that there is a coverage hole in the table result of the select query, as the WRAP value does 

not appear in any transactions. Since SQL can look into the transactions that happened, without additional 

information about the expected coverage, it cannot tell us anything about coverage holes. This behavior, although 

obvious, is somewhat surprising if you’re used to SV coverage, since SV does provide information about coverage 

holes, without any input about the expected coverage space from the user. For example, if you have the following: 
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typedef enum burst_type_t {FIXED = 0, INCR = 1, WRAP =2}; 

 

//… 

burst_type_t burst; 

 

 

covergroup axi_tr; 

 

   burst : coverpoint burst; 

 

endgroup 

SV will automatically show a coverage hole for the WRAP value, because it uses the type definition as a 

coverage space description. To provide it with the information that SV obtains via type definitions, using SQL 

approach will have to create tables like the ones below for all enumerated types. For the example, the assumption 

is that this info is also represented in the log file as shown below: 

name value  

 

RD   0      

 

WR   1  

 

name  value  

 

FIXED 0      

 

INCR  1      

 

WRAP  2  

 

With the type information, the query is modified to contain following steps:  

• Select the name column from the burst_type table shown above. This column contains our expected 

values 

• Match each name value to all transactions with a corresponding burst field, from axi_if_1. The only 

value that will be left unmatched by any transaction is WRAP 

• Collapse all lines that share an identical burst_type.name into one, leaving it with the 3 entries that 

were expected. 

• Improve it using an *if* function, to present True/False values 

 

SELECT DISTINCT # (3) 

    t.name AS expected, # (1) 

    IF(axi.burst IS NOT NULL, 'TRUE', 'FALSE') AS hit #(4) 

FROM burst_type t  

LEFT JOIN axi_if_1 axi  

    ON t.name=axi.burst #(2) 

 

Query result: 

expected hit    

 

INCR     TRUE   
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FIXED    TRUE   

 

WRAP     FALSE 

 

 

VII. CROSS COVERAGE 

 

When showing the example of using SQL for cross-coverage, one can appreciate the  full potential of this 

approach. For extracting the cross-coverage of burst type and rd/wr transactions, using the only two type 

definitions shown above, all one need to do is to run  the following simple query. 

 
SELECT  

    t1.name AS burst,  

    t2.name AS direction  

FROM burst_type t1  

CROSS JOIN rdwr_type t2 

 

The result is a table showing all possible expected values:  

 
burst direction  

 

FIXED RD         

 

FIXED WR         

 

INCR  RD         

 

INCR  WR         

 

WRAP  RD         

 

WRAP  WR 

 

To match those expected values to the actual values, what is needed is a left join with the AXI transactions table, 

but this time with matching lines that have both burst and rd/wr equal. 

 
SELECT DISTINCT  

    t1.name AS burst,  

    t2.name AS rd_wr,  

    IF(axi.burst IS NOT NULL, 'TRUE', 'FALSE') AS hit  

FROM burst_type t1  

CROSS JOIN rdwr_type t2 

LEFT JOIN axi_if_1 axi  

    ON t1.name=axi.burst AND t2.name=axi.rd_wr 
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The resulting coverage results table: 

 

 
burst direction hit    

 

INCR  RD        TRUE   

 

FIXED RD        TRUE   

 

FIXED WR        TRUE   

 

INCR  WR        TRUE   

 

WRAP  RD        FALSE  

 

WRAP  WR        FALSE 

 

On AXI it is common to cross direction, and memory segment, to make sure all segments were accessed. Using 

SQL variables, the address range can be split in 4 and generated a new list of expected buckets with the following 

query. The *SELECT ctr etc.* part in the brackets, is simply SQL’s way of generating a column with numbers 

1,2,3,4. 

 
SET @buckets = 4 

 

SELECT   

    t1.name AS direction,  

    t2.ctr * 1000000000 AS segment  

CROSS JOIN rdwr_type t1  

CROSS JOIN (SELECT ctr FROM ctr_to_100 WHERE ctr < @buckets) t2 

 

The resulting cross-coverage expected table of direction vs. memory segment: 

 
name segment     

 

RD   0           

 

WR   0           

 

RD   1000000000  

 

WR   1000000000  

 

RD   2000000000  

 

WR   2000000000  

 

RD   3000000000  

 

WR   3000000000  

 

Matching it to the actual results only requires one additional *AND* in the condition that does the matching. As 

an addition *ORDER BY* clause is added at the end so that combinations are easy to follow 
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SELECT DISTINCT   

    t1.name AS direction,  

    t2.ctr * 1000000000 AS segment,  

    if(axi.addr is not null, 'TRUE', 'FALSE') AS hit 

CROSS JOIN rdwr_type t1  

CROSS JOIN (SELECT ctr FROM ctr_to_100 WHERE ctr < @buckets) t2 

LEFT JOIN axi_if_1 axi ON  

    t1.name=axi.rd_wr AND  

    t2.ctr=floor(axi.addr/1000000000)  

ORDER BY direction,segment 

 

Coverage results table: 

 
name segment    hit    

 

RD   0          TRUE 

 

RD   1000000000 TRUE   

   

RD   2000000000 TRUE 

 

RD   3000000000 TRUE  

 

WR   0          FALSE  

   

WR   1000000000 TRUE  

 

WR   2000000000 TRUE   

 

WR   3000000000 FALSE 

 

For ignoring one of the combinations in the cross-coverage results an additional WHERE command can be 

added, as shown below. 

SELECT DISTINCT  

    t1.name AS burst,  

    t2.name AS rd_wr,  

    IF(axi.burst IS NOT NULL, 'TRUE', 'FALSE') AS hit 

FROM burst_type t1 CROSS JOIN rdwr_type t2 

LEFT JOIN axi_if_2 axi ON  

    t1.name=axi.burst AND  

    t2.name=axi.rd_wr 

WHERE  

    t1.name <> 'INCR' OR  

    t2.name <> 'RD' 

 

burst direction hit    

 

FIXED RD        TRUE   

 

FIXED WR        TRUE   

 

INCR  WR        TRUE   

 

WRAP  RD        FALSE  

 



 

9 

 

WRAP  WR        FALSE  

 

VIII. COVERAGE PERCENTAGE 

One of the most important parts of collecting coverage in  functional verification, is the  coverage percentage 

number indicated at the end. To finish the SQL example a TRUE/FALSE resulting column can be replaced with 

binary 1/0 notation and an averaging function can be introduced. Below is an example showing how to get 

coverage numbers across  burst type, direction and memory segment. 

 
SELECT AVG(hit)*100 AS coverage_number FROM ( 

    SELECT DISTINCT  

       t1.name AS burst,  

       t2.name AS direction,  

       t3.ctr * 1000000000 AS segment,  

       IF(axi.addr IS NOT NULL, 1, 0) AS hit 

FROM burst_type t1  

CROSS JOIN rdwr_type t2  

CROSS JOIN (SELECT ctr FROM ctr_to_100 WHERE ctr < @buckets) t3 

LEFT JOIN axi_if_2 axi ON  

    t1.name=axi.burst AND  

    t2.name=axi.rd_wr AND  

    t3.ctr=floor(axi.addr/1000000000)) t4 

 

Resulting number for the tables above: 

 
coverage_number 

 

29.1666 

 

IX. CONCLUSION 

At a high level, practically anything that is available for System Verilog coverage can be done with SQL. To 

improve the usability of this method, all SQL commands can be wrapped into a scripting language to create 

coverage functions that can mimic SV API and also keep the SQL hidden upfront. 

 

To prove the possible improvement of this approach and show that it is not all the same as System Verilog 

coverage engine, all queries shown: 

- Are dynamic and platform independent  

- Can be done long after the simulation has ended 

- Can be modified and debugged on-the-fly 

- Give the same information in a more convenient way 

 

In the proposed solution the SystemVerilog’s role is reduced from analyzing the data using cover groups, to merely 

printing out the information into a log file to be post processed later. The steps needed to setup the cloud-based 

coverage include:  

- Having the logs and type information files uploaded to the cloud  

- Turn these logs in to SQL tables (using available cloud services) 

- Query the tables for coverage as described  

- As a last step visualize the tables linked to a test plan, possibly alongside other forms of coverage (formal, 

SVA). 

 

The SQL language is a natural way of working with data, so much more possibilities can be taken from it and 

used for improving the way functional coverage is implemented and collected for any verification platform.  

 
 

 


